

On the Chordality of Ordinary Differential Triangular Decomposition in Top-down Style

Chenqi Mou

BDBC–LMIB–School of Mathematical Sciences Beihang University, China

> ISSAC 2020 Kalamata, Greece / Jul. 20, 2020

Polynomial system solving: triangular decomposition

- **•** polynomial generalization of matrices in echelon forms
- **o** different kinds of triangular sets: characteristic [Wu 86], regular [Kalkbrener 93, Yang & Zhang 94], normal [Lazard 91, Gao & Chou 92], simple (squarefree) [Wang 98, Bächler et.al 12], etc.

Triangular decomposition in top-down style

Triangular decomposition

Polynomial set
$$
\mathcal{F} \subset \mathbb{R}[x_1,\ldots,x_n]
$$

⇓ Triangular sets $\mathcal{T}_1,\ldots,\mathcal{T}_t$ s.t. $\mathsf{Z}(\mathcal{F}) = \bigcup_{i=1}^t \mathsf{Z}(\mathcal{T}_i/\operatorname{ini}(\mathcal{T}_i))$

- solving $\mathcal{F} = 0 \Longrightarrow$ solving all $\mathcal{T}_i = 0$
- polynomial generalization of Gaussian elimination

Top-down style: variables handled in a decreasing order $x_n, x_{n-1}, \ldots, x_1$

- widely used strategy [Wang 1993, 1998, 2000], [Chai, Gao, Yuan 2008]
- the closest to Gaussian elimination

Matrix in echelon form	Triangular set
$\begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} x_1 & x_2 & x_3 \\ * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{bmatrix}$ \n	
Gaussian elimination	Top-down type

Chordal graphs

Perfect elimination ordering / chordal graph

 $G = (V, E)$ a graph with $V = \{x_1, \ldots, x_n\}$: An ordering $x_{i_1} < x_{i_2} < \cdots < x_{i_n}$ of the vertices is called a perfect elimination ordering of G if for each $j = i_1, \ldots, i_n$, the restriction of G on

 $X_i = \{x_i\} \cup \{x_k : x_k < x_i \text{ and } (x_k, x_i) \in E\}$

is a clique. A graph G is chordal if it has a perfect elimination ordering.

Chordal graphs: no new fill-ins in Cholesky factorization \implies sparse Gaussian elimination [Parter 61, Rose 70, Gilbert 94]

Chordal graphs in triangular decomposition

Chordal graph \implies Gaussian elimination \implies Triangular decomposition in top-down style: study the behaviors and design sparse versions of triangular decomposition in top-down style

- **·** [Cifuentes & Parrilo 2017]: chordal networks, connections between chordal graphs and triangular decomposition first established
- [Mou & Bai 2018]: chordal graph in general algorithms for triangular decomposition in top-down style, Wang's algorithm (simply structured) perserves chordality
- [Mou, Bai & Lai 2019]: regular decomposition based on subresultant regular subchains (SRS) preserves chordality, sparse triangular decomposition in top-down style
- \bullet [Mou, & Lai 2020]: simple decomposition based on SRS preserves chordality

In this talk: $|$ algebraic case $| \implies |$ ordinary differential case

Ordinary differential polynomial ring

Ordinary differential polynomial ring $\mathbb{K}\{x\}$

- $\mathbb K$: ordinary differential field of characteristic 0 with a <mark>derivation $\frac{\mathrm{d}}{\mathrm{d}t}$ </mark>
- $x_1 < \cdots < x_n$: differential indeterminates, $x_{ij} := \frac{\mathrm{d}^j x_i}{\mathrm{d} t^j}$
- $\mathbb{K}\{\boldsymbol{x}\}\colon$ polynomial ring over \mathbb{K} in $\{x_{ij} | i = 1, \ldots, n, j \in \mathbb{Z}_{\geq 0}\}\$ (infinite), equipped with $\frac{d}{dt}$

We fix a differential ordering \lt_d on all the derivatives as

 $x_1 \leq_d x_{11} \leq_d x_{12} \leq_d \cdots$ $\leq_d x_2 \leq_d x_{21} \leq_d x_{22} \leq_d \cdots$. . . $\langle d \rangle x_n \langle d \rangle x_{n1} \langle d \rangle x_{n2} \langle d \rangle \cdots$

Differential triangular decomposition

For a differential polynomial $F \in \mathbb{K}\{\boldsymbol{x}\}$:

- its lead $ld(F)$: greatest derivative in F w.r.t. \lt_d
- its order $ord(F)$: index of greatest differential indeterminate w.r.t. \lt

Differential triangular set

A finite ordered set $\mathcal{T} = [T_1, \ldots, T_r]$ of differential polynomials in $\mathbb{K}\{\boldsymbol{x}\}\$ is called a weak differential triangular set if $0 < \text{ord}(T_1) < \cdots < \text{ord}(T_r)$.

 \bullet Extended to a differential triangular system $[\mathcal{T},\mathcal{U}]$: $\mathcal{T} \subset \mathbb{K}\{\bm{x}\}$ equations, $\mathcal{U} \subset \mathbb{K}\{x\}$ inequations

Differential triangular decomposition

Differential polynomial set
$$
\mathcal{F} \subset \mathbb{K}\{\boldsymbol{x}\}
$$

\nWeak differential triangular systems $[\mathcal{T}_1, \mathcal{U}_1], \ldots, [\mathcal{T}_t, \mathcal{U}_t]$

\ns.t. $Z(\mathcal{F}) = \bigcup_{i=1}^t Z(\mathcal{T}_i/\mathcal{U}_i)$

Do algorithms for differential triangular decomposition in top-down style preserve the chordality?

Algebraic VS differential associated graphs

Algebraic Differential $\mathbb{K}[x], x_1, \ldots, x_n$ variables $\mathbb{K}\{x\} \left\{ \begin{array}{c} x_1, \ldots, x_n \text{ differential indeterminates} \\ x_1, \ldots, x_n \text{ variables} \end{array} \right.$ x_{ij} variables

 $\mathcal{F} \subset \mathbb{K}\{\bm{x}\}$: its differential associated graph $\tilde{G}(F)$ (undirected)

- Vertices: differential indeterminates appearing in $\mathcal F$
- Edegs: $\{(x_i, x_j) : \exists F \in \mathcal{F} \text{ s.t. } F \text{ contains } x_i, x_j\}$

Example: $\mathbb{Q}(t)\{x_1,\ldots,x_5\}$, $\mathcal{F} = \{tx_{22} + x_2 + x_1, x_3 + tx_{11} + x_1, (1 +$ $\{t\}_{x_{41}}^2+x_{21}+t{x_2}+x_{32}^2, {x_{51}^2+x_{31}x_2+x_3x_{21}}\}$ Differential VS Algebraic

Wang's method for algebraic triangular decomposition

Wang's algorithm [Wang 93]: top-down style, based on psuedo-divisions, binary decomposition tree

Theorem: Wang's method applied to $\mathcal{F} \subset \overline{\mathbb{K}}[x]$, chordal

 $\mathcal{F} \subset \mathbb{K}[x]$ chordal, $x_1 < \cdots < x_n$ perfect elimination ordering: For any node $(\mathcal{P}, \mathcal{Q}, i)$ in the binary decomposition tree, $G(\mathcal{P}) \subset G(\mathcal{F})$

Wang's algorithm for differential triangular decomposition

Algebraic: $G \in \mathbb{K}[x]$ Differential: $G \in \mathbb{K}\{x\}$ $\circ G = \text{ini}(G) \text{lv}(G)^d + \text{tail}(F)$

 $\circ \text{ini}(G)^s F = QG + R$ $\circ \text{ini}(G)$

 \circ lv(G): greatest variable w.r.t. $\lt \circ$ $\text{Id}(G)$: greatest derivative w.r.t. $\lt d$ $d + \operatorname{tail}(F)$ \circ $G = \operatorname{ini}(G) \operatorname{ld}(G)^d + \operatorname{tail}(G)$ $(\text{ini}(G)$ involves no $\text{lv}(G)$ (ord $(\text{ini}(G))$ may equal ord (G)) \circ sep (G) : formal derivative w.r.t. $ld(G)$ s_1 sep $(G) {}^{s_2}F = [G] + R$

Theorem: Wang's method applied to $\mathcal{F} \subset \mathbb{K}\{\bm{x}\}$, chordal $\mathcal{F} \subset \mathbb{K}\{x\}$ chordal, $x_1 < \cdots < x_n$ perfect elimination ordering: For any node $(\mathcal{P}, \mathcal{Q}, i)$ in the decomposition tree, $\tilde{G}(\mathcal{P}) \subset \tilde{G}(\mathcal{F})$

SRS-based algorithm for differential triangular decomposition

- SRS is used to find the pseudo-gcd of two differential polynomials: $H_2, \ldots, H_r := \text{SubRegSubchain}(T_1, T_2, x)$
- The differential case is almost the same as the algebraic one: only the variable now is the derivative x_{ij}

Theorem: SRS-based algorithm applied to $\mathcal{F} \subset \mathbb{K}\{\bm{x}\}$, chordal $\mathcal{F} \subset \mathbb{K}\{\bm{x}\}\$ chordal, $x_1 < \cdots < x_n$ perfect elimination ordering: For any node $(\mathcal{P}, \mathcal{Q}, i)$ in the decomposition tree, $\tilde{G}(\mathcal{P}) \subset \tilde{G}(\mathcal{F})$

Concluding remarks

- Propose the concept of differential chordal graphs
- Prove that two typical algorithms for ordinary differential triangular decomposition preserve chordality \implies sparse algorithms as in the algebraic case? [Mou, Bai & Lai 19]
- What about the partial differential case? HARD
	- Definition of partial differential triangular sets: based on leads, $\frac{\partial x_1}{\partial u}$ and $\frac{\partial x_1}{\partial v}$
	- Property of coherence: Δ -polynomials, against the top-down strategy

Thanks for watching!