

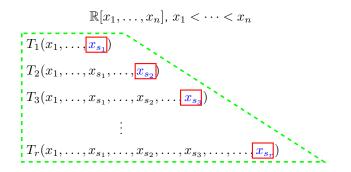
On the Chordality of Ordinary Differential Triangular Decomposition in Top-down Style

Chenqi Mou

BDBC–LMIB–School of Mathematical Sciences Beihang University, China

> ISSAC 2020 Kalamata, Greece / Jul. 20, 2020

Polynomial system solving: triangular decomposition



- polynomial generalization of matrices in echelon forms
- different kinds of triangular sets: characteristic [Wu 86], regular [Kalkbrener 93, Yang & Zhang 94], normal [Lazard 91, Gao & Chou 92], simple (squarefree) [Wang 98, Bächler et.al 12], etc.

Triangular decomposition in top-down style

Triangular decomposition

Polynomial set
$$\mathcal{F} \subset \mathbb{R}[x_1, \ldots, x_n]$$

Triangular sets $\mathcal{T}_1, \ldots, \mathcal{T}_t$ s.t. $Z(\mathcal{F}) = \bigcup_{i=1}^t Z(\mathcal{T}_i / \operatorname{ini}(\mathcal{T}_i))$

- solving $\mathcal{F} = 0 \Longrightarrow$ solving all $\mathcal{T}_i = 0$
- polynomial generalization of Gaussian elimination

Top-down style: variables handled in a decreasing order $x_n, x_{n-1}, \ldots, x_1$

- widely used strategy [Wang 1993, 1998, 2000], [Chai, Gao, Yuan 2008]
- the closest to Gaussian elimination

Matrix in echelon formTriangular set
$$\begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} x_1 & x_2 & x_3 \\ * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{bmatrix}$$
Gaussian eliminationTop-down tyle

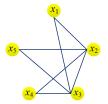
Chordal graphs

Perfect elimination ordering / chordal graph

G = (V, E) a graph with $V = \{x_1, \ldots, x_n\}$: An ordering $x_{i_1} < x_{i_2} < \cdots < x_{i_n}$ of the vertices is called a perfect elimination ordering of G if for each $j = i_1, \ldots, i_n$, the restriction of G on

 $X_j = \{x_j\} \cup \{x_k : x_k < x_j \text{ and } (x_k, x_j) \in E\}$

is a clique. A graph G is chordal if it has a perfect elimination ordering.



Chordal graphs: no new fill-ins in Cholesky factorization \implies sparse Gaussian elimination [Parter 61, Rose 70, Gilbert 94]

Chordal graphs in triangular decomposition

Chordal graph \implies Gaussian elimination \implies Triangular decomposition in top-down style: study the behaviors and design sparse versions of triangular decomposition in top-down style

- [Cifuentes & Parrilo 2017]: chordal networks, connections between chordal graphs and triangular decomposition first established
- [Mou & Bai 2018]: chordal graph in general algorithms for triangular decomposition in top-down style, Wang's algorithm (simply structured) perserves chordality
- [Mou, Bai & Lai 2019]: regular decomposition based on subresultant regular subchains (SRS) preserves chordality, sparse triangular decomposition in top-down style
- [Mou, & Lai 2020]: simple decomposition based on SRS preserves chordality

In this talk: algebraic case \implies ordinary differential case

Ordinary differential polynomial ring

Ordinary differential polynomial ring $\mathbb{K}\{x\}$

- K: ordinary differential field of characteristic 0 with a derivation $\frac{d}{dt}$
- $x_1 < \cdots < x_n$: differential indeterminates, $x_{ij} := \frac{d^j x_i}{dt^j}$
- $\mathbb{K}{x}$: polynomial ring over \mathbb{K} in ${x_{ij}|i = 1, ..., n, j \in \mathbb{Z}_{\geq 0}}$ (infinite), equipped with $\frac{d}{dt}$

We fix a differential ordering $<_d$ on all the derivatives as

 $x_{1} <_{d} x_{11} <_{d} x_{12} <_{d} \cdots$ $<_{d} x_{2} <_{d} x_{21} <_{d} x_{22} <_{d} \cdots$ \vdots $<_{d} x_{n} <_{d} x_{n1} <_{d} x_{n2} <_{d} \cdots$

Differential triangular decomposition

For a differential polynomial $F \in \mathbb{K}\{x\}$:

- its lead $\operatorname{ld}(F)$: greatest derivative in F w.r.t. $<_d$
- its order $\operatorname{ord}(F)$: index of greatest differential indeterminate w.r.t. <

Differential triangular set

A finite ordered set $\mathcal{T} = [T_1, \dots, T_r]$ of differential polynomials in $\mathbb{K}\{x\}$ is called a weak differential triangular set if $0 < \operatorname{ord}(T_1) < \cdots < \operatorname{ord}(T_r)$.

• Extended to a differential triangular system [T, U]: $T \subset \mathbb{K}\{x\}$ equations, $U \subset \mathbb{K}\{x\}$ inequations

Differential triangular decomposition

Differential polynomial set
$$\mathcal{F} \subset \mathbb{K}\{x\}$$

 \Downarrow
Weak differential triangular systems $[\mathcal{T}_1, \mathcal{U}_1], \dots, [\mathcal{T}_t, \mathcal{U}_t]$
s.t. $Z(\mathcal{F}) = \bigcup_{i=1}^t Z(\mathcal{T}_i/\mathcal{U}_i)$

Do algorithms for differential triangular decomposition in top-down style preserve the chordality?

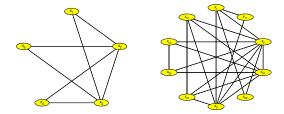
Algebraic VS differential associated graphs

 $\begin{array}{ll} \underline{\textbf{Algebraic}} & \underline{\textbf{Differential}} \\ \mathbb{K}[\boldsymbol{x}], \ x_1, \dots, x_n \text{ variables} & \mathbb{K}\{\boldsymbol{x}\} \left\{ \begin{array}{l} x_1, \dots, x_n \text{ differential indeterminates} \\ x_{ij} \text{ variables} \end{array} \right. \end{array}$

 $\mathcal{F} \subset \mathbb{K}\{x\}$: its differential associated graph $\tilde{G}(F)$ (undirected)

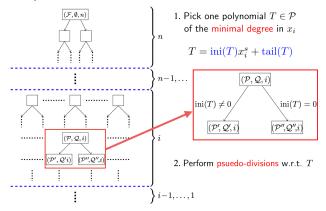
- \bullet Vertices: differential indeterminates appearing in ${\cal F}$
- Edegs: $\{(x_i, x_j) : \exists F \in \mathcal{F} \text{ s.t. } F \text{ contains } x_i, x_j\}$

Example: $\mathbb{Q}(t)\{x_1, \dots, x_5\}, \mathcal{F} = \{tx_{22} + x_2 + x_1, x_3 + tx_{11} + x_1, (1 + t)x_{41}^2 + x_{21} + tx_2 + x_{32}^2, x_{51}^2 + x_{31}x_2 + x_3x_{21}\}$ Differential VS Algebraic



Wang's method for algebraic triangular decomposition

Wang's algorithm [Wang 93]: top-down style, based on psuedo-divisions, binary decomposition tree



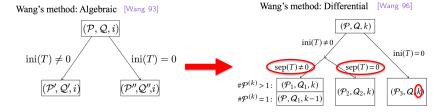
Theorem: Wang's method applied to $\mathcal{F} \subset \mathbb{K}[x]$, chordal

 $\mathcal{F} \subset \mathbb{K}[x]$ chordal, $x_1 < \cdots < x_n$ perfect elimination ordering: For any node $(\mathcal{P}, \mathcal{Q}, i)$ in the binary decomposition tree, $G(\mathcal{P}) \subset G(\mathcal{F})$

Wang's algorithm for differential triangular decomposition

 $\circ \operatorname{ini}(G)^s F = QG + R$

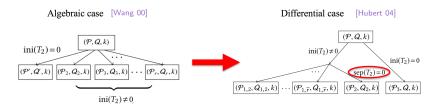
 $\begin{array}{l} \underline{\text{Differential}}: \ G \in \mathbb{K}\{x\} \\ \circ \ \mathrm{ld}(G): \ \text{greatest derivative w.r.t.} <_d \\ \circ \ G = \ \mathrm{ini}(G) \ \mathrm{ld}(G)^d + \ \mathrm{tail}(G) \\ & \ (\mathrm{ord}(\mathrm{ini}(G)) \ \mathrm{may \ equal \ ord}(G)) \\ \circ \ \mathrm{sep}(G): \ \mathrm{formal \ derivative \ w.r.t.} \ \ \mathrm{ld}(G) \\ \circ \ \mathrm{ini}(G)^{s_1} \mathrm{sep}(G)^{s_2}F = [G] + R \end{array}$



Theorem: Wang's method applied to $\mathcal{F} \subset \mathbb{K}\{x\}$, chordal $\mathcal{F} \subset \mathbb{K}\{x\}$ chordal, $x_1 < \cdots < x_n$ perfect elimination ordering: For any node $(\mathcal{P}, \mathcal{Q}, i)$ in the decomposition tree, $\tilde{G}(\mathcal{P}) \subset \tilde{G}(\mathcal{F})$

SRS-based algorithm for differential triangular decomposition

- SRS is used to find the pseudo-gcd of two differential polynomials: $H_2, \ldots, H_r := \text{SubRegSubchain}(T_1, T_2, x)$
- The differential case is almost the same as the algebraic one: only the variable now is the derivative x_{ij}



Theorem: SRS-based algorithm applied to $\mathcal{F} \subset \mathbb{K}\{x\}$, chordal $\mathcal{F} \subset \mathbb{K}\{x\}$ chordal, $x_1 < \cdots < x_n$ perfect elimination ordering: For any node $(\mathcal{P}, \mathcal{Q}, i)$ in the decomposition tree, $\tilde{G}(\mathcal{P}) \subset \tilde{G}(\mathcal{F})$

Concluding remarks

- Propose the concept of differential chordal graphs
- Prove that two typical algorithms for ordinary differential triangular decomposition preserve chordality => sparse algorithms as in the algebraic case? [Mou, Bai & Lai 19]
- What about the partial differential case? HARD
 - Definition of partial differential triangular sets: based on leads, $\frac{\partial x_1}{\partial u}$ and $\frac{\partial x_1}{\partial v}$
 - \bullet Property of coherence: $\Delta\text{-polynomials},$ against the top-down strategy

Thanks for watching!