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Chordal graph

Perfect elimination ordering / chordal graph

G = (V,E) a graph with V = {x1, . . . , xn}:
An ordering xi1 < xi2 < · · · < xin of the vertexes is called a perfect
elimination ordering of G if for each j = i1, . . . , in, the restriction of G on

Xj = {xj} ∪ {xk : xk < xj and (xk, xj) ∈ E}

is a clique. A graph G is said to be chordal if there exists a perfect
elimination ordering of it.

Figure: Chordal VS non-chordal graphs
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Chordal graph

Equivalent conditions

G = (V,E) chordal ⇐⇒ for any cycle C contained in G of four or more
vertexes, there is an edge e ∈ E \ C connects two vertexes in C.

Figure: An illustrative chordal graph

A chordal graph is also called a triangulated one.
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Triangular set and decomposition

Triangular set in K[x1, . . . , xn] with x1 < · · · < xn

T1(x1, . . . , xs1)

T2(x1, . . . , xs1 , . . . , xs2)

T3(x1, . . . , xs1 , . . . , xs2 , . . . , xs3)

...

Tr(x1, . . . , xs1 , . . . , xs2 , . . . , xs3 , . . . , . . . , xsr )

Triangular decomposition

Polynomial sets F ⊂ K[x1, . . . , xn]
⇓

Triangular sets T1, . . . , Tt s.t. Z(F) =
⋃t

i=1 Z(Ti/ ini(Ti))

 Solving F = 0 =⇒ solving all Ti = 0
 Multivariate generalization of Gaussian elimination
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Inspired by the pioneering works of

D. Cifuentes P.A. Parrilo (from MIT)

on triangular sets and chordal graphs

[Cifuentes and Parrilo 2017]: chordal networks of polynomial systems

Connections between triangular sets and chordal graphs

Algorithms for computing triangular sets due to Wang become more
efficient when the input polynomial set is chordal (=⇒ Why?)

 [Cifuents and Parrilo 2016]: Gröbner bases and chordal graphs
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Chordal networks

Figure: A chordal network (borrowed from Parrilo’s slides)

Elimination tree / triangular decomposition clique-wisely
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Associated graphs of polynomial sets

F ∈ K[x1, . . . , xn] a polynomial: the (variable) support of F , supp(F ), is
the set of variables in x1, . . . , xn which effectively appear in F

supp(F) := ∪F∈F supp(F ) for F ⊂ K[x1, . . . , xn]

Associated graphs

F ⊂ K[x1, . . . , xn], associated graph G(F) of F is an undirected graph:

(a) vertexes of G(F): the variables in supp(F)

(b) edge (xi, xj) in G(F): if there exists one polynomial F ∈ F with
xi, xj ∈ supp(F )

Chordal polynomial set

A polynomial set F ⊂ K[x1, . . . , xn] is said to be chordal if G(F) is
chordal.



Backgrounds Problems Top-down Wang Applications

Associated graphs of polynomial sets

K[x1, . . . , x5]

P = {x2 + x1, x3 + x1, x
2
4 + x2, x

3
4 + x3, x5 + x2, x5 + x3 + x2}

Q = {x2 + x1, x3 + x1, x3, x
2
4 + x2, x

3
4 + x3, x5 + x2}

Figure: Associated graphs G(P) (chordal) and G(Q) (not chordal)
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Chordal graphs in Gaussian elimination
New fill-ins in Cholesky factorization of a matrix A = LLt (credits to J.
Gilbert)

Matrices with chordal graphs: no new fill-ins (subgraphs) =⇒ sparse Gaus-
sian elimination [Parter 61, Rose 70, Gilbert 94]
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Triangular decomposition in top-down style

The variables are handled in a strictly decreasing order: xn, xn−1, . . . , x1

widely used strategy [Wang 1993, 1998, 2000], [Chai, Gao, Yuan 2008]

the closest to Gaussian elimination

algorithms due to Wang are mostly in top-down style (!!)

Matrix in echelon form Triangular set
x1 x2 x3

1 ∗ ∗
0 1 ∗
0 0 1

=⇒


x1 x2 x3

∗ 0 0
∗ ∗ 0
∗ ∗ ∗


Gaussian elimination Top-down triangular

decomposition
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Problems

1 Chordal graphs in Gaussian elimination =⇒ Chordal graphs in tri-
angular decomposition in top-down style: multivariate generalization

Changes of graph structures of the polynomials in triangular
decomposition
relationships (like inclusion) between associated graphs of com-
puted triangular sets and the input polynomial set

2 Sparse Gaussian elimination =⇒ sparse triangular decomposition in
top-down style: multivariate generalization, on-going work

sparse Gröbner bases [Faugère, Spaenlehauer, Svartz 2014]

sparse FGLM algorithms [Faugère, Mou 2011, 2017]
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Reduction to a triangular set from a chordal polynomial set

P⊂K[x1, . . . , xn]: P(i) = {P ∈ P : lv(P ) = xi}

Proposition

P⊂K[x1, . . . , xn] chordal, x1< · · ·<xn perfect elimination ordering:

Let Ti ∈ K[x1, . . . , xn] be a polynomial with lv(Ti) =xi and supp(Ti)⊂
supp(P(i)). Then T = [T1, . . . , Tn] is a triangular set, and G(T ) ⊂ G(P).

 In particular, supp(Ti) = supp(P(i)) =⇒ G(T ) = G(P)

P = {P(1), P(2), . . . , P(n)} : G(P)

⇓ ⇓ ⇓ ⊃

T = [ T1, T2, . . . , Tn ] : G(T )
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An counter-example for non-chordal polynomial sets

This proposition does not necessarily hold in general if the polynomial set
P is not chordal.

Q = {x2 + x1, x3 + x1, x3, x
2
4 + x2, x

3
4 + x3, x5 + x2}

⇓
T = [x2 + x1, x3 + x1,−x2x4 + x3, x5 + x2]

Figure: The associated graphs G(Q) and G(T )
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Reduction w.r.t. one variable in triangular decomposition
Theorem

P⊂K[x1, . . . , xn] chordal, x1< · · ·<xn perfect elimination ordering:

Let T ∈ K[x1, . . . , xn] with lv(T ) = xn and supp(T ) ⊂ supp(P(n)), and
R ⊂ K[x1, . . . , xn] such that supp(R) ⊂ supp(P(n)) \ {xn}. Then for
the polynomial set

P̃ = {P̃(1), . . . , P̃(n−1), T},
where P̃(k) = P(k) ∪R(k) for k = 1, . . . , n− 1, we have G(P̃) ⊂ G(P)
 In particular, supp(T ) = supp(P(n)) =⇒ G(P̃) = G(P)

commonly-used reduction in top-down triangular decomposition

P = {P(1), P(2), . . . , P(n)} : G(P)

⇓ ⇓ ⇓ ⊃

P̃ = {P̃(1), P̃(2), . . . , T } : G(P̃)
= =

s.t.

P(1) ∪R(1) P(2) ∪R(2) supp(T ) ⊂ supp(P(n))
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Some notations
mapping fi

fi : 2K[xi]\K[xi−1] → (K[xi] \K[xi−1])× 2K[xi−1]

P 7→ (T ,R)

s.t supp(T ) ⊂ supp(P) and supp(R) ⊂ supp(P) (where K[x0] = K).

P ⊂ K[x1, . . . , xn] and a fixed integer i (1 ≤ i ≤ n), suppose that
(Ti,Ri) = fi(P(i)) for some fi. For j = 1, . . . , n, define

redi(P(j)) :=


P(j), if j > i
{Ti}, if j = i

P(j) ∪R(j)
i , if j < i

and redi(P) := ∪nj=1 redi(P(j)). In particular, write

redi(P) := redi(redi+1(· · · (redn(P)) · · · ))

The above theorem becomes

G(redn(P)) ⊂ G(P), and the equality holds if supp(Tn) = supp(P(n)).
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Reduction w.r.t. all variables in triangular decomposition

P = {P(1), P(2), . . . , P(n−1), P(n)} : G(P)

⇓ ⇓ ⇓ ⇓ ⊃

redn(P) = {P̃(1), P̃(2), . . . , P̃(n−1), Tn } : G(redn(P))

⇓ ⇓ ⇓ ⇓ ??

redn−1(P) = { ˜̃P(1), ˜̃P(2), . . . , Tn−1, Tn } : G(redn−1(P))

... ??

red1(P) = { T1, T2, . . . , Tn−1, Tn } : G(red1(P))

Proposition

P ⊂ K[x1, . . . , xn] chordal, x1 < · · · < xn perfect elimination ordering:

For each i (1 ≤ i ≤ n), suppose that (Ti,Ri) = fi(redi+1(P)(i)) for some
fi and supp(Ti) = supp(redi+1(P)(i)). Then

G(red1(P)) = · · · = G(redn−1(P)) = G(redn(P)) = G(P).
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Counter example for successive inclusions
supp(Ti) ⊂ supp(redi+1(P)(i)): then in general we will NOT have

G(red1(P)) ⊂ · · · ⊂ G(redn−1(P)) ⊂ G(redn(P)) ⊂ G(P)

Example

P = {x2 + x1, x3 + x1, x
2
4 + x2, x

3
4 + x3, x5 + x2, x5 + x3 + x2}

Q = red5(P) = {x2 + x1, x3 + x1, x3, x
2
4 + x2, x

3
4 + x3, x5 + x2}

⇓
T4 = prem(x3

4 + x3, x
2
4 + x2) = −x2x4 + x3,

R4 = {prem(x2
4 + x2,−x2x4 + x3)} = {x2

3 − x3
2},

⇓
Q′ := red4(P) = {x2 + x1, x3 + x1, x

2
3 − x3

2, x3,−x2x4 + x3, x5 + x2}.
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Subgraphs of the input chordal graph

Theorem

P ⊂ K[x1, . . . , xn] chordal, x1 < · · · < xn perfect elimination ordering:

For each i = n, . . . , 1, G(redi(P)) ⊂ G(P) .

Corollary

P ⊂ K[x1, . . . , xn] chordal, x1 < · · · < xn perfect elimination ordering:

If T := red1(P) does not contain any nonzero constant, then T forms a
triangular set such that G(T ) ⊂ G(P).

T above: the main component in the triangular decomposition

Valid for ANY algorithms for triangular decomposition in top-down
style

Problem: what about the other triangular sets?
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Wang’s method: algorithm
[Wang 93]: Wang’s method, simply-structured algorithm for triangular de-
composition in top-down style
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Wang’s method: binary decomposition tree

P ′ := P \ P(i) ∪ {T} ∪ {prem(P, T ) : P ∈ P}, Q′ := Q∪ {ini(T )},
P ′′ := P \ {T} ∪ {ini(T ), tail(T )}, Q′′ := Q,

F = ini(F )xs
k + tail(F )
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Wang’s method: left child

Proposition: Wang’s method applied to F ⊂ K[x1, . . . , xn], chordal

F ⊂ K[x1, . . . , xn] chordal, x1 < · · · < xn perfect elimination ordering:

(P,Q, i) arbitrary node in the binary decomposition tree such that G(P) ⊂
G(F), T ∈ P with minimal degree in xi. Denote

P ′ = P \ P(i) ∪ {T} ∪ {prem(P, T ) : P ∈ P(i)}.

Then G(P ′) ⊂ G(F).

G(P ′) ⊂ G(F) on the conditions that G(F) is chordal and G(P)⊂G(F)
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Wang’s method: right child

Proposition

(P,Q, i) arbitrary node in the binary decomposition tree, T ∈ P(i) with
minimal degree in xi. Denote

P ′′ = P \ {T} ∪ {ini(T ), tail(T )}.
Then G(P ′′) ⊂ G(P ).
 In particular, supp(tail(T )) = supp(T ) =⇒ G(P ′′) = G(P).

G(P ′′) ⊂ G(P ) under no conditions
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Wang’s method: any node
Theorem: Wang’s method applied to F ⊂ K[x1, . . . , xn], chordal

F ⊂ K[x1, . . . , xn] chordal, x1 < · · · < xn perfect elimination ordering:

For any node (P,Q, i) in the binary decomposition tree, G(P) ⊂ G(F)

Corollary: Wang’s method applied to F ⊂ K[x1, . . . , xn], chordal

F ⊂ K[x1, . . . , xn] chordal, x1 < · · · < xn perfect elimination ordering:

For any triangular set T computed by Wang’s method, G(T ) ⊂ G(F)
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Complexity analysis for triangular decomposition in
top-down style

Chordal completion

For a graph G, another graph G′ is called a chordal completion of G if G′

is chordal with G as its subgraph.

The treewidth of a graph G is defined to be the minimum of the sizes of
the largest cliques in all the possible chordal completions of G.

many NP-complete problems related to graphs can be solved effi-
ciently for graphs of bounded treewidth [Arnborg, Proskurowski 1989]

Complexities for computing Gröbner bases for polynomial sets with
small treewidth [Cifuents and Parrilo 2016]

Reminding you of the inclusion of graphs for Wang’s method

The input chordal associated graph: upper bound

Complexities for triangular decomposition: first for polynomial sets
with chordal graphs / small treewidth
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Variable sparsity of polynomial sets
Variable sparsity

G(F) = (V,E) associated graph of F = {F1, . . . , Fr} ⊂ K[x1, . . . , xn].
Define the variable sparsity sv(F) of F as

sv(F) = |E|/
(

2

|V |

)
,

denominator: edge number of a complete graph of |V | vertexes

G(F) can be extended to a weighted graph Gw(F) by associating the
number #{F ∈ F : xi, xj ∈ supp(F )} to each edge (xi, xj) of G(F)

Weighted variable sparsity

the weighted variable sparsity swv (F) of F can be defined as

swv (F) =

∑
e∈E we

r ·
(

2
|V |
) ,

where r is the number of polynomials in F .

Sparse triangular decomposition
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A refined algorithm for regular decomposition

Input: a polynomial set F ⊂ K[x]
Output: a variable ordering x and a regular decomposition Φ of F with
respect to x

1 Compute the variable sparsity sv of F
2 If sv is smaller than some sparsity threshold s0 (F is sparse), then

1 If G(F) is chordal, then compute its perfect elimination ordering
x 1

2 Else compute its chordal completion G(F) 2 and a perfect elim-
ination ordering x of G(F)

3 Compute the regular decomposition of F with respect to x with a
top-down algorithm 3

1[Rose, Tarjan, and Lueker 1976]
2[Bodlaender and Koster 2008]
3Say, [Wang 2000]
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Sparse triangular decomposition

A sparse polynomial system arising from the lattice reachability problem
[Cifuentes and Parrilo 2017], [Diaconis, Eisenbud, Sturmfels 1998]

Fi := {xkxk+3 − xk+1xk+2 : k = 1, 2, . . . , i }, i ∈ Z>0

Figure: Associated graph of Fi
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Sparse triangular decomposition
Comparisons of timings for computing regular decomposition of one class
of chordal and variable sparse polynomials [Cifuentes and Parrilo 2017]

Fi := {xkxk+3 − xk+1xk+2 : k = 1, 2, . . . , i }, i ∈ Z>0

Table: Regular decomposition with RegSer in Epsilon: top-down
n sv tp tr tr tr/tp
10 0.53 0.19 0.14 0.21 0.22 0.11 0.21 0.18 0.95
20 0.28 1.44 4.24 4.45 3.15 4.41 4.65 4.18 2.90
25 0.23 4.25 50.62 20.29 15.55 25.01 35.10 29.31 6.90
30 0.19 11.94 177.37 185.94 130.54 142.97 103.42 148.05 12.40
35 0.17 42.33 560.56 291.35 633.43 320.98 938.45 548.95 12.97
40 0.15 161.11 1883.64 3618.04 4289.13 4013.99 2996.37 3360.23 20.86

Table: Regular decomposition with RegularChains in Maple: not top-down
n sv tp tr tr tr/tp
15 0.37 45.90 17.29 21.41 13.62 32.50 19.63 20.89 0.46
17 0.33 216.69 87.29 197.35 104.86 68.28 130.83 117.72 0.54
19 0.30 1303.08 415.90 308.37 780.75 221.75 831.15 511.58 0.39
21 0.27 8787.32 1823.29 2064.55 2431.49 1926.02 1593.36 1967.74 0.22
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Sparse triangular decomposition
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Future works

Chordality in regular decomposition in top-down style: the most pop-
ular triangular decomposition

More other graph structures to study?

Thanks!
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led by Prof. Dongming WANG in

Beijing Advanced Innovation Center for Big Data and Brain Computing

Basic annual payment between 250k-350k CNY

Send your CV and brief future research plans to me (Dr.Chenqi MOU,
chenqi.mou@buaa.edu.cn)

More information: http://cmou.net/files/bdbc-postdoc-chn.
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