

ON W-CHARACTERISTIC SETS OF LEXICOGRAPHIC GRÖBNER BASES Chenqi Mou^a and Dongming Wang^{ab}

^aLMIB – School of Mathematics and Systems Science, Beihang University, Beijing 100191, China ^{ab}Centre National de la Recherche Scientifique, 75794 Paris Cedex 16, France chenqi.mou@buaa.edu.cn, dongming.wang@lip6.fr

Preliminaries: LEX Gröbner bases

LEX term ordering $\boldsymbol{u} = \boldsymbol{x}^{\boldsymbol{\alpha}} >_{\text{LEX}} \boldsymbol{v} = \boldsymbol{x}^{\boldsymbol{\beta}}$ if the left rightmost nonzero entry $\Leftarrow Ordering \Rightarrow$ in the vector $\boldsymbol{\alpha} - \boldsymbol{\beta}$ is positive

 \rightarrow *leading term* lt(F): the greatest term in a polynomial F

<u>Gröbner basis</u> A finite set $\{G_1, \ldots, G_s\}$ of polynomials in \Im is called a *Gröbner* basis of \mathfrak{I} with respect to $\langle \operatorname{if} \langle \operatorname{lt}(G_1), \ldots, \operatorname{lt}(G_s) \rangle = \langle \operatorname{lt}(\mathfrak{I}) \rangle$.

<u>Normal Form</u> $F \in \mathbb{K}[\boldsymbol{x}], \ \mathcal{G} = \{G_1, \ldots, G_s\}$ a Gröbner basis of \mathfrak{I} : there is a unique polynomial $R \in \mathbb{K}[\boldsymbol{x}]$ such that $F - R \in \mathfrak{I}$ and no term of R is divisible by any of $lt(G_1), \ldots, lt(G_s) \rightsquigarrow R$ is called the *normal form*, nform (F, \mathcal{G})

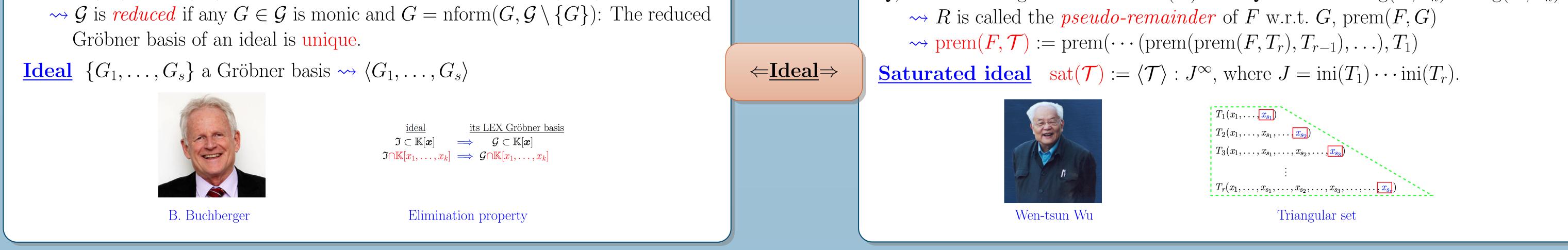
Preliminaries: triangular sets

Variable ordering $x_1 < \ldots < x_n \rightsquigarrow leading variable lv(F)$ of F $F = Ix_i^k + R$, with $I \in \mathbb{K}[\boldsymbol{x}_{i-1}], R \in \mathbb{K}[\boldsymbol{x}_i]$, and $\deg(R, x_i) < k = \deg(F, x_i)$. $\rightsquigarrow I$ is called the *initial* of F, ini(F)

 $\Leftarrow \underline{\text{Definition}} \Rightarrow$ **Triangular set** Any finite, nonempty, ordered set $\mathcal{T} = [T_1, \ldots, T_r]$ of polynomials in $\mathbb{K}[\boldsymbol{x}] \setminus \mathbb{K}$ is called a *triangular set* if $lv(T_1) < \cdots < lv(T_r)$.

 $\sim \mathcal{T}$ is *normal* if each ini(T) involves only $\{x_1, \ldots, x_n\} \setminus \{ lv(T) : T \in \mathcal{T} \}$

Pseudo-remainder $F, G \in \mathbb{K}[\mathbf{x}]$ two polynomials with $lv(G) = x_k$: there exist Q, R and an integer s such that $\operatorname{ini}(G)^s F = QG + R$ and $\deg(R, x_k) < \deg(G, x_k)$.



 $\Leftarrow \underline{\text{Reduction}} \Rightarrow$

W-characteristic sets of LEX Gröbner bases

Background: structures of LEX Gröbner bases They were studied first by Lazard [4] for bivariate ideals and then extended to general zero-dimensional multivariate (radical) ideals [3, 6, 2]. Based on the structures of LEX Gröbner bases, algorithms have been proposed to compute triangular decompositions out of LEX Gröbner bases for zero-dimensional ideals [5, 2]. The relationships between LEX Gröbner bases and Ritt characteristic sets were explored in [1] and then made clearer in [8] with the concept of W-characteristic sets.

<u>W-characteristic set</u> Let $\mathcal{P} \subset \mathbb{K}[\boldsymbol{x}]$ be a polynomial set and \mathcal{G} be the reduced LEX Gröbner basis of $\langle \mathcal{P} \rangle$. Then the set $\bigcup \{ G \in \mathcal{G}^{(i)} | \forall G' \in \mathcal{G}^{(i)} \setminus \{G\}, G <_{\text{LEX}} G' \},\$

ordered according to $<_{\text{LEX}}$, where $\mathcal{G}^{(i)} := \{ G \in \mathcal{G} : \text{lv}(G) = x_i \}$, is called the <u>*W*-characteristic set</u> of $\langle \mathcal{P} \rangle$. **Basic properties** Let \mathcal{C} be the W-characteristic set of $\langle \mathcal{P} \rangle \subseteq \mathbb{K}[\mathbf{x}]$. Then (a) for any $P \in \langle \mathcal{P} \rangle$,

 $\operatorname{prem}(P, \mathcal{C}) = 0; \ (b) \ \langle \mathcal{C} \rangle \subseteq \langle \mathcal{P} \rangle \subseteq \operatorname{sat}(\mathcal{C}); \ (c) \ \mathsf{Z}(\mathcal{C}/\operatorname{ini}(\mathcal{C})) \subseteq \mathsf{Z}(\mathcal{P}) \subseteq \mathsf{Z}(\mathcal{C}).$

An example in $\mathbb{K}[a, x, y, z]$ with a < x < y < z

 $\begin{cases} x^3 + 2x^2 + (1 - a^2)x - a^2, & x^3 + 2x^2 + (1 - a^2)x - a^2 \\ x^2y + xy - ax - a, ay - x - 1, xy^2 - x - 1, \implies ay - x - 1 \end{cases}$ $(x^{2} + x - a^{2})z, (xy - a)z, z^{2} - yz + y^{3} - y\}$ $(x^{2} + x - a^{2})z$

LEX Gröbner basis

W-characteristic set

Minimal triangular set

contained in Gröbner basis

Normality and Psuedo-divisibility in W-characteristic sets (and thus in LEX Gröbner bases)

Either normality or pseudo-divisibility: a theorem

Let $\mathcal{C} = [C_1, \ldots, C_r]$ be the W-characteristic set of $\langle \mathcal{P} \rangle \subseteq \mathbb{K}[\boldsymbol{x}]$. If \mathcal{C} is <u>not normal</u>, then there exists an integer k $(1 \le k \le r)$ such that $[C_1, \ldots, C_k]$ is normal and $[C_1, \ldots, C_{k+1}]$ is not regular. Assume that the variables x_1, \ldots, x_n are ordered such that the parameters of \mathcal{C} are all smaller than the other variables and let $I_{k+1} = \operatorname{ini}(C_{k+1})$ and l be the integer such that $\operatorname{lv}(I_{k+1}) = \operatorname{lv}(C_l)$. (a) If I_{k+1} is not R-reduced with respect to C_l , then Pseudodivisibility

 $prem(I_{k+1}, [C_1, \dots, C_l]) = 0, \quad prem(C_{k+1}, [C_1, \dots, C_k]) = 0.$

(b) If I_{k+1} is R-reduced with respect to C_l , then $|\operatorname{prem}(C_l, [C_1, \ldots, C_{l-1}, I_{k+1}]) = 0|$ and either res $(ini(I_{k+1}), [C_1, \dots, C_{l-1}]) = 0$ or prem $(C_{k+1}, [C_1, \dots, C_{l-1}, I_{k+1}, C_{l+1}, \dots, C_k]) = 0.$

Example (continued)

The W-characteristic set above
$$\begin{bmatrix} x^3 + 2x^2 + (1 - a^2)x - a^2 \\ ay - x - 1 \\ (x^2 + x - a^2)z \end{bmatrix}$$
Structure Gröber

res of LEX ner bases

proposed

is not normal (the initial $x^2 + x - a^2$ involves x), and thus it is not regular: $x^{3} + 2x^{2} + (1 - a^{2})x - a^{2} = (x^{2} + x - a^{2})(x + 1),$

which corresponds to (b) left.

Characteristic pairs

Characteristic pair A pair $(\mathcal{G}, \mathcal{C})$ with $\mathcal{G}, \mathcal{C} \subseteq \mathbb{K}[\mathbf{x}]$ is called a *characteristic pair* if \mathcal{G} is a reduced LEX Gröbner basis, \mathcal{C} is the W-characteristic set of \mathcal{G} , and \mathcal{C} is normal. **Connecting two ideals** Let \mathcal{C} be the W-characteristic set of $\langle \mathcal{P} \rangle$. If $\operatorname{sat}(\mathcal{C}) = \langle \mathcal{C} \rangle$, then

Characteristic decomposition

Characteristic decomposition A set $\{(\mathcal{G}_1, \mathcal{C}_1), \ldots, (\mathcal{G}_t, \mathcal{C}_t)\}$ of characteristic pairs in $\mathbb{K}[\boldsymbol{x}]$ is called a *characteristic decomposition* of \mathcal{F} if Algorithm

 $\mathsf{Z}(\mathcal{F}) = \bigcup \mathsf{Z}(\mathcal{G}_i) = \bigcup \mathsf{Z}(\mathcal{C}_i/\operatorname{ini}(\mathcal{C}_i)) = \bigcup \mathsf{Z}(\operatorname{sat}(\mathcal{C}_i)).$

 $\operatorname{sat}(\mathcal{C}) = \langle \mathcal{P} \rangle.$

 \rightarrow The reverse of the above property does not hold in general.

Strong characteristic pair A characteristic pair $(\mathcal{G}, \mathcal{C})$ is *strong* if $|\langle \mathcal{G} \rangle = \operatorname{sat}(\mathcal{C})|$. \rightsquigarrow A reduced LEX Gröbner basis \mathcal{G} is *characterizable* if $\langle \mathcal{G} \rangle = \operatorname{sat}(\mathcal{C})$, where \mathcal{C} is the W-characteristic set of \mathcal{G} .

Normality The W-characteristic set of any characterizable Gröbner basis is normal. → Every characteristic pair has a characterizable LEX Gröbner basis, and a characterizable Gröbner basis furnishes a characteristic pair with its W-characteristic set.

i=1 \rightarrow A characteristic decomposition is *strong* if its characteristic pairs are all strong. **<u>Transform to Ritt characteristic set</u>** $\mathcal{C} = [C_1, \ldots, C_r]$ W-characteristic set of $\langle \mathcal{P} \rangle$, $C^* = [C_1, \operatorname{prem}(C_2, [C_1]), \dots, \operatorname{prem}(C_r, [C_1, \dots, C_{r-1}])].$ If \mathcal{C} is normal, then \mathcal{C}^* is normal and is a Ritt characteristic set of $\langle \mathcal{P} \rangle$. **Transform to strong characteristic pair** $(\mathcal{G}, \mathcal{C})$ a characteristic pair, let \mathcal{G} and \mathcal{C} be the reduced LEX Gröbner basis and W-characteristic set of $\operatorname{sat}(\mathcal{C})$ respectively. Then \mathcal{C} is normal, $|\operatorname{sat}(\mathcal{C}) = \langle \mathcal{G} \rangle|$, and thus $(\mathcal{G}, \mathcal{C})$ is a strong characteristic pair.

LEX Gröbner bases and W-characteristic sets with rich interconnections

References

[1] Philippe Aubry, Daniel Lazard, and Marc Moreno Maza, On the theories of [4] Daniel Lazard, Ideal bases and primary decomposition: Case of two variables, J. [7] Chenqi Mou, Dongming Wang, and Xiaoliang Li, Decomposing polynomial sets into triangular sets, J. Symbolic Comput. 28 (1999), no. 1–2, 105–124. Symbolic Comput. **1** (1985), no. 3, 261–270. simple sets over finite fields: The positive-dimensional case, Theoret. Comput. Sci. [2] Xavier Dahan, On lexicographic Gröbner bases of radical ideals in dimension zero: [5] Daniel Lazard, Solving zero-dimensional algebraic systems, J. Symbolic Comput. 13 468 (2013), 102–113. Dongming Wang, On the connection between Ritt characteristic sets and Interpolation and structure, Preprint at arXiv:1207.3887, 2012. (1992), no. 2, 117–131. Buchberger-Gröbner bases, Math. Comput. Sci. 10 (2016), 479–492. [3] Michael Kalkbrener, Solving systems of algebraic equations by using Gröbner bases, [6] Maria Grazia Marinari and Teo Mora, A remark on a remark by Macaulay or enhancing Dongming Wang, Rina Dong, and Chenqi Mou, Decomposition of polynomial sets Proceedings of Eurocal '87, Springer-Verlag, Berlin Heidelberg, 1989, pp. 282–292. Lazard structural theorem, Bull. Iranian Math. Soc. 29 (2003), no. 1, 1–45. into characteristic pairs, arXiv:1702.08664 (2017).

